
ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

6.5 REDUCTIONS

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

Overview: introduction to advanced topics

Main topics. [next 3 lectures]

・Reduction: design algorithms, establish lower bounds, classify problems.

・Linear programming: the ultimate practical problem-solving model.

・Intractability: problems beyond our reach.

Shifting gears.

・From individual problems to problem-solving models.

・From linear/quadratic to polynomial/exponential scale.

・From details of implementation to conceptual framework.

Goals.

・Place algorithms we've studied in a larger context.

・Introduce you to important and essential ideas.

・Inspire you to learn more about algorithms!

2

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

6.5 REDUCTIONS

4

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N
min, max, median,

Burrows-Wheeler transform, ...

linearithmic N log N
sorting, convex hull,

closest pair, farthest pair, ...

quadratic N2 ?

⋮ ⋮ ⋮

exponential cN ?

5

Bird’s-eye view

Desiderata. Classify problems according to computational requirements.

Desiderata'.

Suppose we could (could not) solve problem X efficiently.

What else could (could not) we solve efficiently?

“ Give me a lever long enough and a fulcrum on which to
 place it, and I shall move the world. ” — Archimedes

6

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Cost of solving X = total cost of solving Y + cost of reduction.

perhaps many calls to Y
on problems of different sizes

preprocessing and postprocessing

instance I
(of X)

solution to I
Algorithm

for Y

Algorithm for X

7

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Ex 1. [finding the median reduces to sorting]

To find the median of N items:

・Sort N items.

・Return item in the middle.

Cost of solving finding the median. N log N + 1 .

cost of sorting

cost of reduction

instance I
(of X)

solution to I
Algorithm

for Y

Algorithm for X

8

Reduction

Def. Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Ex 2. [element distinctness reduces to sorting]

To solve element distinctness on N items:

・Sort N items.

・Check adjacent pairs for equality.

Cost of solving element distinctness. N log N + N .

cost of sorting
cost of reduction

instance I
(of X)

solution to I
Algorithm

for Y

Algorithm for X

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

6.5 REDUCTIONS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

6.5 REDUCTIONS

11

Reduction: design algorithms

Def. Problem X reduces to problem Y if you can use an algorithm that

solves Y to help solve X.

Design algorithm. Given algorithm for Y, can also solve X.

Ex.

・3-collinear reduces to sorting. [assignment]

・Finding the median reduces to sorting.

・Element distinctness reduces to sorting.

・CPM reduces to topological sort. [shortest paths lecture]

・Arbitrage reduces to shortest paths. [shortest paths lecture]

・Burrows-Wheeler transform reduces to suffix sort. [assignment]

・…

Mentality. Since I know how to solve Y, can I use that algorithm to solve X ?

programmer’s version: I have code for Y. Can I use it for X?

Sorting. Given N distinct integers, rearrange them in ascending order.

Convex hull. Given N points in the plane, identify the extreme points

of the convex hull (in counterclockwise order).

Proposition. Convex hull reduces to sorting.

Pf. Graham scan algorithm (see next slide).

Cost of convex hull. N log N + N.
12

Convex hull reduces to sorting

convex hull sorting

1251432
2861534
3988818
4190745
8111033
13546464
89885444
43434213
34435312

cost of reductioncost of sorting

Graham scan.

・Choose point p with smallest (or largest) y-coordinate.

・Sort points by polar angle with p to get simple polygon.

・Consider points in order, and discard those that

would create a clockwise turn.

13

Graham scan algorithm

p

Proposition. Undirected shortest paths (with nonnegative weights) reduces

to directed shortest path.

Pf. Replace each undirected edge by two directed edges.

Shortest paths on edge-weighted graphs and digraphs

14

9

5

 10

12

15

9

12

 10

10

4

15 10

15

154

12125

2

3 5 t

5

s

5

10

12

15

9

12

10154

s

2

3

5

6 t

Shortest paths on edge-weighted graphs and digraphs

Proposition. Undirected shortest paths (with nonnegative weights) reduces

to directed shortest path.

Cost of undirected shortest paths. E log V + E.

15

cost of shortest
paths in digraph cost of reduction

5

10

12

15

9

12

10154

s

2

3

5

6 t

Caveat. Reduction is invalid for edge-weighted graphs with negative

weights (even if no negative cycles).

Remark. Can still solve shortest-paths problem in undirected graphs

(if no negative cycles), but need more sophisticated techniques.

16

Shortest paths with negative weights

ts 7 –4

ts 7 –4

reduction creates
negative cycles

reduces to weighted
non-bipartite matching (!)

7 –4

Linear-time reductions involving familiar problems

17

sorting

element
distinctness

finding the median

SPT
scheduling

Note: See the text for references.

shortest paths
in digraphs

arbitrage

network reliability

product distribution

maxflow

bipartite matching

linear programming
(stay tuned)

shortest paths
in undirected graphs
(no negative weights)

parallel scheduling
(precedence-constrained)

convex hull

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

6.5 REDUCTIONS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

6.5 REDUCTIONS

20

Bird's-eye view

Goal. Prove that a problem requires a certain number of steps.

Ex. In decision tree model, any compare-based sorting algorithm

requires Ω(N log N) compares in the worst case.

Bad news. Very difficult to establish lower bounds from scratch.

Good news. Spread Ω(N log N) lower bound to Y by reducing sorting to Y.

assuming cost of reduction is not too high

argument must apply to all
conceivable algorithms

b < c

yes no

a < c

yes

a < c

yes no

a c b c a b

b a ca b c b < c

yes no

b c a c b a

a < b

yes no

no

21

Linear-time reductions

Def. Problem X linear-time reduces to problem Y if X can be solved with:

・Linear number of standard computational steps.

・Constant number of calls to Y.

Ex. Almost all of the reductions we've seen so far. [Which ones weren't?]

Establish lower bound:

・If X takes Ω(N log N) steps, then so does Y.

・If X takes Ω(N 2) steps, then so does Y.

Mentality.

・If I could easily solve Y, then I could easily solve X.

・I can’t easily solve X.

・Therefore, I can’t easily solve Y.

22

Lower bound for convex hull

Proposition. In quadratic decision tree model, any algorithm for sorting

N integers requires Ω(N log N) steps.

Proposition. Sorting linear-time reduces to convex hull.

Pf. [see next slide]

Implication. Any ccw-based convex hull algorithm requires Ω(N log N) ops.

allows linear or quadratic tests:

 xi < xj or (xj – xi) (xk – xi) – (xj) (xj – xi) < 0

linear or
quadratic tests

lower-bound mentality:
if I can solve convex hull

efficiently, I can sort efficiently

sorting

1251432
2861534
3988818
4190745
8111033
13546464
89885444
43434213
34435312

convex hull

Proposition. Sorting linear-time reduces to convex hull.

・Sorting instance: x1, x2, ... , xN.

・Convex hull instance: (x1 , x12), (x2, x22), ... , (xN , xN2).

Pf.

・Region { x : x2 ≥ x } is convex ⇒ all points are on hull.

・Starting at point with most negative x, counterclockwise order of hull

points yields integers in ascending order.
23

Sorting linear-time reduces to convex hull

f (x) = x2

(xi , xi2)

x

y

lower-bound mentality:
if I can solve convex hull

efficiently, I can sort efficiently

Establishing lower bounds through reduction is an important tool

in guiding algorithm design efforts.

Q. How to convince yourself no linear-time convex hull algorithm exists?

A1. [hard way] Long futile search for a linear-time algorithm.

A2. [easy way] Linear-time reduction from sorting.

Establishing lower bounds: summary

24

convex hull

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

6.5 REDUCTIONS

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

6.5 REDUCTIONS

Desiderata. Problem with algorithm that matches lower bound.

Ex. Sorting and convex hull have complexity N log N.

Desiderata'. Prove that two problems X and Y have the same complexity.

・First, show that problem X linear-time reduces to Y.

・Second, show that Y linear-time reduces to X.

・Conclude that X and Y have the same complexity.

Classifying problems: summary

27

even if we don't know what it is!

sorting

convex hull

Caveat

SORT. Given N distinct integers, rearrange them in ascending order.

CONVEX HULL. Given N points in the plane, identify the extreme points

of the convex hull (in counterclockwise order).

Proposition. SORT linear-time reduces to CONVEX HULL.

Proposition. CONVEX HULL linear-time reduces to SORT.

Conclusion. SORT and CONVEX HULL have the same complexity.

A possible real-world scenario.

・System designer specs the APIs for project.

・Alice implements sort() using convexHull().

・Bob implements convexHull() using sort().

・Infinite reduction loop!

・Who's fault?
28

well, maybe not so realistic

29

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.

Brute force. N 2 bit operations.

1 1 0 1 0 1 0 1

× 0 1 1 1 1 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

1 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 1

30

Integer arithmetic reductions

Integer multiplication. Given two N-bit integers, compute their product.

Brute force. N 2 bit operations.

Q. Is brute-force algorithm optimal?

problem arithmetic order of growth

integer multiplication a × b M(N)

integer division a / b, a mod b M(N)

integer square a 2 M(N)

integer square root ⎣√a ⎦ M(N)

integer arithmetic problems with the same complexity as integer multiplication

31

History of complexity of integer multiplication

Remark. GNU Multiple Precision Library uses one of five

different algorithm depending on size of operands.

year algorithm order of growth

? brute force N 2

1962 Karatsuba-Ofman N 1.585

1963 Toom-3, Toom-4 N 1.465 , N 1.404

1966 Toom-Cook N 1 + ε

1971 Schönhage–Strassen N log N log log N

2007 Fürer N log N 2 log*N

? ? N

number of bit operations to multiply two N-bit integers

used in Maple, Mathematica, gcc, cryptography, ...

32

Linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.

Brute force. N 3 flops.

0.1 0.2 0.8 0.1

0.5 0.3 0.9 0.6

0.1 0.0 0.7 0.4

0.0 0.3 0.3 0.1

×

0.4 0.3 0.1 0.1

0.2 0.2 0.0 0.6

0.0 0.0 0.4 0.5

0.8 0.4 0.1 0.9

=

0.16 0.11 0.34 0.62

0.74 0.45 0.47 1.22

0.36 0.19 0.33 0.72

0.14 0.10 0.13 0.42

row i

column j j

i

0.5 · 0.1 + 0.3 · 0.0 + 0.9 · 0.4 + 0.6 · 0.1 = 0.47

33

Linear algebra reductions

Matrix multiplication. Given two N-by-N matrices, compute their product.

Brute force. N 3 flops.

Q. Is brute-force algorithm optimal?

problem linear algebra order of growth

matrix multiplication A × B MM(N)

matrix inversion A–1 MM(N)

determinant | A | MM(N)

system of linear equations Ax = b MM(N)

LU decomposition A = L U MM(N)

least squares min ||Ax – b||2 MM(N)

numerical linear algebra problems with the same complexity as matrix multiplication

34

History of complexity of matrix multiplication

year algorithm order of growth

? brute force N 3

1969 Strassen N 2.808

1978 Pan N 2.796

1979 Bini N 2.780

1981 Schönhage N 2.522

1982 Romani N 2.517

1982 Coppersmith-Winograd N 2.496

1986 Strassen N 2.479

1989 Coppersmith-Winograd N 2.376

2010 Strother N 2.3737

2011 Williams N 2.3727

? ? N 2 + ε

number of floating-point operations to multiply two N-by-N matrices

35

Birds-eye view: review

Desiderata. Classify problems according to computational requirements.

Frustrating news. Huge number of problems have defied classification.

complexity order of growth examples

linear N
min, max, median,

Burrows-Wheeler transform, ...

linearithmic N log N
sorting, convex hull,

closest pair, farthest pair, ...

quadratic N2 ?

⋮ ⋮ ⋮

exponential cN ?

36

Birds-eye view: revised

Desiderata. Classify problems according to computational requirements.

Good news. Can put many problems into equivalence classes.

complexity order of growth examples

linear N min, max, median,

linearithmic N log N sorting, convex hull,

M(N) ?
integer multiplication,

division, square root, ...

MM(N) ?
matrix multiplication, Ax = b,
least square, determinant, ...

⋮ ⋮ ⋮

NP-complete probably not Nb SAT, IND-SET, ILP, ...

STAY TUNED!

37

Complexity zoo

Complexity class. Set of problems sharing some computational property.

Bad news. Lots of complexity classes.

Text

http://qwiki.stanford.edu/index.php/Complexity_Zoo

38

Summary

Reductions are important in theory to:

・Design algorithms.

・Establish lower bounds.

・Classify problems according to their computational requirements.

Reductions are important in practice to:

・Design algorithms.

・Design reusable software modules.

– stacks, queues, priority queues, symbol tables, sets, graphs

– sorting, regular expressions, Delaunay triangulation

– MST, shortest path, maxflow, linear programming

・Determine difficulty of your problem and choose the right tool.

http://algs4.cs.princeton.edu

ROBERT SEDGEWICK | KEVIN WAYNE

Algorithms

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

6.5 REDUCTIONS

ROBERT SEDGEWICK | KEVIN WAYNE

F O U R T H E D I T I O N

Algorithms

http://algs4.cs.princeton.edu

Algorithms ROBERT SEDGEWICK | KEVIN WAYNE

6.5 REDUCTIONS

‣ introduction

‣ designing algorithms

‣ establishing lower bounds

‣ classifying problems

